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We investigate volume phase transition in gels immersed in mixture solvents, on the basis of a three-
component Flory-Rehner theory. When the selectivity of the minority solvent component to the poly-
mer network is strong, the gel tends to shrink with an increasing concentration of the additive, re-
gardless of whether it is good or poor. This behavior originates from the difference of the additive
concentration between inside and outside the gel. We also found the gap of the gel volume at the tran-
sition point can be controlled by adding the strongly selective solutes. By dissolving a strongly poor
additive, for instance, the discontinuous volume phase transition can be extinguished. Furthermore,
we observed that another volume phase transition occurs far from the original transition point. These
behaviors can be well explained by a simplified theory neglecting the nonlinearity of the additive
concentration. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732857]

I. INTRODUCTION

Swelling behavior of a polymer network was first investi-
gated by Flory and Rehner.1 On the basis of this work, discon-
tinuous volume phase transition (VPT) of gels was predicted
theoretically.2 Hence, the VPT has received much attention
from both scientific and industrial viewpoints.3–5 In various
types of gels, addition of solutes into the solvent often plays
very important roles in their volume change.3–6 For example,
the VPT was first realized in a polyacrylamide (PAA) gel im-
mersed in a mixture of water and acetone.3 In this experiment,
the solvent quality, or χ parameter, is controlled by chang-
ing the volume fraction of the acetone. It is also well known
that addition of salts dramatically affects the behaviors of
ionic gels.7–9 Furthermore, a nonioninc hydrated gel such as
poly(N-isopropylacrylamide) gel (NIPA) changes its volume
discontinuously. In the hydrated gels, the VPT is attributed to
temperature-dependence of hydrogen bondings of the poly-
mer network.6, 10 It has been reported that its VPT is affected
by adding salts11–14 and other additives.15–21 Although some
microscopic theories are devoted to explain the VPT,21–24

there remain unresolved problems. For instance, the transition
point is lowered by dissolving salts,12–14 whereas it is raised
with surfactants.16 The difference between these additive ef-
fects remains unclear. Interestingly, is was reported that the
discontinuous transition of the NIPA gel disappears when NaI
is dissolved.14 We consider that a macroscopic description
will also help us to understand these unresolved phenomena.

It is often assumed that the composition of a mixture sol-
vent is same in and out of a gel. This assumption is referred to
as single liquid approximation (SLA). The SLA is experimen-
tally confirmed in a NIPA gel in a dimethyl sulfoxide-water
mixture, for instance.25 However, the compositions of mix-
ture solvents are not necessarily homogeneous.25–27 There, the
difference of the composition between the interior and exte-
rior of the gel would lead to a dramatic effect on its volume
change. Some extended Flory-Huggins models dealing with a
polymer network and two species of solvent molecules were
developed to investigate the volume change of a polymer net-

work in a mixture solvent.26–30 In these theories, the volume
change is characterized by the compositions of the three com-
ponents and three χ parameters. They were studied systemati-
cally for fixed sets of the χ parameters. Usually, the χ param-
eters in polymer systems depend on environment parameters
such as temperature. Since it is quite complicated to incor-
porate the temperature-dependences of the χ parameters, the
swelling behavior in mixture solvents has not been fully un-
derstood.

Recently, the effects of solutes with strong selective
solvation on phase behaviors of a water-oil mixture was
investigated.31–33 By dissolving a very small amount of
strongly hydrophobic solute into the water-oil mixture, the
oil-rich phase containing the solute is precipitated even in
the one-phase region. This finding implies that such solutes
would affect the VPT in gels.

The aim of this study is to clarify the effect of the ad-
ditives on the VPT in gels, based on a simple theoretical ar-
gument. In particular, we focus on the cases, in which one
of the solvent components has strong selectivity to the poly-
mer network. So far, the VPT is realized in hydrophilic gels
(polyelectrolyte and hydrated ones). Our model is based on
a simple Flory-Huggins theory, so that it is also applicable
to hydrophobic polymer networks. Then, we hope our model
will help one to find VPT in other new types of gels.

II. MODEL FREE ENERGY

Swelling behaviors of gels are well described by the
Flory-Rehner theory.1 The free energy F consists of a mix-
ing part Fmix and an elastic part Fel as

F = Fmix + Fel. (1)

For a gel immersed in a mixture solvent, the mixing free en-
ergy Fmix is given by26–28, 30, 32

Fmix = kBT v−1
0 [Vgf (φ1g, φ2g, φ3) + Vsf (φ1s, φ2s, 0)], (2)
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where kB is the Boltzmann constant and T is the temperature.
Vg and Vs are the volumes of the interior and exterior of the
gel, respectively. In this model, we assume that the volumes of
each monomeric unit of the polymer network and the solvent
molecules are equal to a characteristic volume v0 for simplic-
ity. f (φ1, φ2, φ3) is the Flory-Huggins type mixing free energy
of the ternary system as34

f (φ1, φ2, φ3) = φ1 ln φ1 + φ2 ln φ2 +
∑
i<j

χijφiφj . (3)

Here, φ1 and φ2 are the volume fractions of the first and
second components of the mixture solvent, respectively. In
Eq. (2), φig and φis stand for the volume fraction of the ith
component (i = 1, 2) in and out of the gel. φ3 is the volume
fraction of the polymer network. Since all the polymer chains
are chemically connected forming a single network, the poly-
mers are not dissolved outside the gel, that is, φ3s = 0. In
Eq. (3), the first two terms stem from the translational entropy
of the solvent molecules. Here, the translational entropy of the
network is neglected. The last term is the interaction energy
among the solvent molecules and the monomeric units of the
network. χ ij is the interaction parameter between the ith and
jth components.

We employ Flory’s rubber elasticity as35

Fel = 1

2
kBT νVg0

⎧⎨
⎩

∑
k=x,y,z

γ 2
k − 3 − 2B ln(γxγyγz)

⎫⎬
⎭ , (4)

where Vg0 is the volume of the gel in a reference state, ν is the
density of cross linking points in the reference state, and γ k

is the elongation ratio in the k-axis (k = x, y, z). B is a nonlin-
ear elastic coefficient. In polyelectrolyte gels, the translational
entropy of the counter-ions is renormalized into B as B + b,
where b is the number of the dissociable monomeric unit per
effective chain. In this study, however, we do not consider the
electric charges explicitly. In the case of isotropic swelling,
the elongation ratio is coupled with the volume fraction of the
polymer network as

γk =
(

Vg

Vg0

)1/3

=
(

φ30

φ3

)1/3

, (5)

where φ30 is the volume fraction of the network in the refer-
ence state. Therefore, the elastic energy Eq. (4) is rewritten by
a function of φ3 as,

Fel = 1

2
kBT νVg0

{
3

(
φ30

φ3

)2/3

− 2B ln

(
φ30

φ3

)}
. (6)

We impose the incompressible conditions for both in and out
of the gel,

φ1g + φ2g + φ3 = 1, (7)

φ1s + φ2s = 1. (8)

Here, we define a grand potential as

� = Fmix + Fel − μ2(Vgφ2g + Vsφ2s) + κ(Vg + Vs), (9)

where μ2 and κ are Lagrange multipliers to conserve the
amount of the second component and the total volume. The

equilibrium state is characterized by minimizing �,

∂�

∂φ2g
= ∂�

∂φ2s
= 0. (10)

∂�

∂Vg
= ∂�

∂Vs
= 0, (11)

Then, we obtained the equilibrium conditions

μ̃(φ2g, φ3) = μ̃(φ2s, 0)

(
= v0μ2

kBT

)
, (12)

kBT

v0
(	̃0 + 	̃ad + 	̃el) = 0, (13)

where μ̃ is the reduced chemical potential given by

μ̃(φ2, φ3) = ln
φ2

1 − φ2 − φ3

+χ12(1 − 2φ2 − φ3) + (χ23 − χ31)φ3. (14)

Equations (12) and (13) represent the balances of the chemical
potential for the second component and the osmotic pressure,
respectively.

	̃0 is a part of the osmotic pressure for the gel without
the second solvent component. It stems from the mixing free
energy and given by

	̃0 = −φ3 − χ31φ
2
3 − ln(1 − φ3). (15)

	̃el is the contribution of the elasticity as

	̃el = −νv0

{(
φ3

φ30

)1/3

− B

(
φ3

φ30

)}
. (16)

If the solvent does not contain the additive φ2 = 0, the balance
of the osmotic pressure is expressed by 	̃0 + 	̃el = 0.

	̃ad is the contribution of the second component and is
given by

	̃ad = − ln

(
1 − φ2g

1 − φ3

)
+ ln(1 − φ2s)

−χ12
(
φ2

2g − φ2
2s

) + Gφ2gφ3, (17)

where G = χ23 − χ31 − χ12 is a parameter describing the
affinity of the second component to the polymer network. 	̃0

and 	̃ad come from the mixing free energy Fmix. If G < 0 and
|G| � 1, the additive tends to be adsorbed selectively to the
polymer network. If G � 1, on the other hand, the additive
would be expelled from the gel.

In this study, we assume that the binary solvent is com-
pletely mixed outside the gel. We note that the volume of the
equilibrated gel does not change if we add more mixture sol-
vent whose composition is equal to the equilibrated outer sol-
vent. Hence, we take a limit of Vs/Vg → ∞ with fixing φ2s,
so that φ2s is uniquely determined for a fixed μ2. Hereafter,
we use φ2s as a control parameter.
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FIG. 1. The swelling curves of a gel immersed in a mixture solvent. We set φ30 = 1.0 × 10−2, νv0 = 1.0 × 10−5, B = 1.15, and χ12 = 0.0. In the absence of
additives, the gel undergoes volume phase transition with increasing χ31. We dissolve solutes of χ23 = −1.0 (pro-gel) in (a) and χ23 = 1.0 (anti-gel) in (b).
The black solid lines are calculated from Eq. (21).

III. RESULTS AND DISCUSSIONS

A. The first volume phase transition

We numerically study the effects of additives on volume
changes of gels. First, we focus on the cases, in which the
gel can undergo VPT without additives. We set φ30 = 1.0
× 10−2, νv0 = 1.0 × 10−5 and B = 1.15. The effective chain
polymerization is N = φ30/νv0 � 1 and φ30 ∼ N−1/2.26

We vary χ31 continuously to induce the volume change
with fixing the other parameters. We obtain the swelling
curves of the gel by solving Eqs. (12) and (13) numerically.
Figure 1 shows the swelling curves for several values of φ2s.
In the absence of additives, the VPT occurs at χ31 = χ

(0)
31t

(≈ 0.5327). In Fig. 1(a), we dissolve the additive of
χ12 = 0.0 and χ23 = −1.0 , which has affinity to the polymer
network (pro-gel). As its concentration φ2s is increased, the
transition point shifts to higher χ31. In Fig. 1(b), the additive
of χ12 = 0.0 and χ23 = 1.0 is dissolved into the solvent. This
additive dislikes the polymer network (anti-gel). It is shown
that the transition point shifts to lower χ31 with an increasing
φ2s. For the cases as in Fig. 1, the SLA can explain the effects

of the solute on the volume changes qualitatively. In the SLA,
the volume fractions of the solvent components inside the gel
are assumed to be φ1g = (1 − φ3)(1 − φ2s) and φ2g = (1
− φ3)φ2s. Then, the interaction parameter between the poly-
mer network and the mixture solvent is approximated as

χ̃31 = χ31(1 − φ2s) + χ23φ2s − χ12φ2s(1 − φ2s)

= χ31 + Gφ2s + O
(
φ2

2s

)
. (18)

This means that the interaction parameter changes effectively
with φ2s depending on G. For the plotted range in Fig. 1(a)
(χ31 ∈ [0.528, 0.542]), G remains negative, so that the solvent
becomes more good, swelling the gel with an increasing φ2s.
As shown in Fig. 1(b), on the other hand, the solvent changes
to more poor and the gel shrinks with φ2s for the solute of
positive G.

In Fig. 1, the absolute value of the resulting G is
rather small (|G| � 2). Next, we study the effects of so-
lutes of strong selectivity |G| � 1. Figures 2(a) and 2(b)
show the swelling curves in the mixture solvents of χ23

= −10.0 and χ23 = 10.0, respectively. The other parameters
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FIG. 2. The swelling curves of a gel immersed in a mixture solvent. We set φ30 = 1.0 × 10−2, νv0 = 1.0 × 10−5, B = 1.15, and χ12 = 0.0. We dissolve solutes
of χ23 = −10.0 (pro-gel) in (a) and χ23 = 10.0 (anti-gel) in (b). The black solid lines are calculated from Eq. (21). The additives have strong selectivities to
the polymer network.
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FIG. 3. (a) The shifts of the transition point from χ
(0)
31t are shown for several values of χ23. The shift is numerically obtained with the same parameters as in

Figs. 1 and 2. For χ23 = 7.5 and 10.0, the transition points are terminated since the discontinuous volume changes disappear. (b) The dependence of 
χ31t on
χ23 is plotted for φ2s = 0.001. The broken curve represents g(φ3c, Ḡ) [Eq. (26)] with φ3c = 0.0267 and χ

(0)
31t = 0.5327.

are the same as those in Fig. 1. In the both cases, the transition
points are shifted to lower χ31, regardless of whether the so-
lute is good or poor. This behavior is in contrast to the volume
changes in Fig. 1 and indicates the SLA does not work well
when the additives have the strong selectivity to the polymer
network.

Figure 3(a) shows the dependences of the transition
shift 
χ31t on the additive concentration φ2s, where 
χ31t

= χ31t − χ
(0)
31t and χ

(0)
31t is the transition point without additives.

An increase of 
χ31t is observed for χ23 ≈ −1.0, whereas

χ31t is lowered with an increasing φ2s for the other addi-
tives. In the plotted range of φ2s, 
χ31t has linear dependence
on φ2s. The transition shifts for φ2s = 0.001 are plotted with
respect to χ23 in Fig. 3(b). It indicates a non-monotonic be-
havior of the transition point.

The difference of the additive effects between χ23

= −1.0 and χ23 = −10.0 is notable, since the both addi-
tives have tendencies to be adsorbed onto the polymer net-
work. When |χ23| is small, the difference between φ2g and
φ2s is rather small. As explained by Eq. (18), the addition of
the solute with negative χ23 makes the mixture solvent more
good to the polymer. Thus, the gel is simply swollen with an
increasing φ2s. If χ23 (or G) is negatively large enough, on the
other hand, the concentration of the solute inside the gel be-
comes much larger than that outside gel, i.e., φ2g � φ2s [see
Eq. (19)]. By shrinking its volume, the polymer network tends
to increase the contact points to the additive molecules. This
nonlinear effect would give rise to the difference between χ23

= −1.0 and χ23 = −10.0.
Figure 2 also shows that the gap of the volume transi-

tion depends on the additive concentration when the additive
has strong selectivity. As φ2s is increased, the volume gap
is increased for χ23 = −10.0 [see Fig. 2(a)], while it is de-
creased for χ23 = 10.0 [Fig. 2(b)]. For χ23 = 10.0, in partic-
ular, the gap disappears eventually at a certain concentration
φ2s = φ2st, above which the gel does not undergo the VPT
[see below]. Figure 4 plots the gap of the volume fraction

φ3t(= φ3t+ − φ3t−) at the transition point, where φ3t+ and
φ3t− are the volume fractions just below and above the tran-

sition point. For a large positive value of χ23, 
φ3t decreases
toward zero with an increasing φ2s.

It is known that the elasticity parameter B influences the
nature of the VPT.3 Figure 5 shows the swelling curves of a
gel of B = 1.10 with varying χ31. In the absence of additive,
the volume of this gel changes continuously. By dissolving the
pro-gel additive of χ23 = −10.0, the swelling curve becomes
non-monotonic with respect to χ31, so that the gel undergoes
the VPT. Figures 2(b) and 5 indicate that we can arbitrarily
induce or erase the VPT by adding solutes with the strong
selectivities.

We assume that only a subtle amount of the additive is
dissolved in the outer solvent, i.e., φ2s � 1. From Eq. (12),
the volume fraction of the additive inside the gel is expressed
by

φ2g = (1 − φ3)e−Gφ3φ2s + O
(
φ2

2s

)
. (19)
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FIG. 4. The gap of the volume fraction φ3 at the transition is plotted with
φ2s. We set φ30 = 1.0 × 10−2, νv0 = 1.0 × 10−5, B = 1.15, and χ12 = 0.0
as in Figs. 1 and 2.
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FIG. 5. The swelling curves of a gel immersed in a mixture solvent. We set
φ30 = 1.0 × 10−2, νv0 = 1.0 × 10−5, B = 1.10, and χ12 = 0.0. We dissolve
the pro-gel solute of χ23 = −10.0. The black solid lines are calculated from
Eq. (21). When φ2s = 0, the gel changes its volume continuously without
VPT.

Substituting Eq. (19) into Eq. (17), we obtain

	̃ad = ln(1 − φ2s) − ln(1 − φ2se
−Gφ3 )

+Gφ3(1 − φ3)e−Gφ3φ2s + O
(
φ2

2g

)
= [e−Gφ3{1 + Gφ3(1 − φ3)} − 1]φ2s + O

(
φ2

2g

)
. (20)

Then, the swelling curve is approximately given from
Eqs. (15), (16), and (20) by

χ31
∼= −φ−2

3 ln(1 − φ3) − αφ
−5/3
3 + (β − 1)φ−1

3

+ [e−Gφ3{1 + Gφ3(1 − φ3)} − 1]φ−2
3 φ2s, (21)

where α = νv0/φ
1/3
30 and β = νv0B/φ30. Since the right hand

side of Eq. (21) includes χ31 via G, we cannot obtain an
analytical solution of χ31. Then, we replace G to Ḡ = χ23

− χ
(0)
31t − χ21 and regard Ḡ as a fixed parameter. The approxi-

mated curves of Eq. (21) are drawn in Figs. 1, 2, and 5. They
are well in agreement with the numerical solutions.

Regarding β as a variable, a tri-critical point of the VPT
is given by

∂χ31

∂φ3

∣∣∣∣
φ3c,βc

= 0,
∂2χ31

∂φ2
3

∣∣∣∣
φ3c,βc

= 0. (22)

Here, α is treated to be fixed. By solving Eq. (22), we obtain
φ3c and βc, which give the swelling curve passing through
the tri-critical point. In the vicinity of the tri-critical point, the
swelling curve is approximated by

χ31 ≈ χ31t − β − βc

φ2
3c

(φ3 − φ3c) + u

6
(φ3 − φ3c)3, (23)

where u is a positive constant. If β < βc, the curve of χ31

changes monotonically with φ3, such that the gel volume
changes continuously with changing χ31. On the other hand,
inflection points appears when β > βc. If so, the gel becomes
mechanically unstable, so that it exhibits the discontinuous
volume changes as 
φ3t = 2

√
(β − βc)/u/φ3c at χ31 = χ31t.3

The part of the osmotic pressure 	̃ad shifts the tri-critical
point in Eq. (23) as

χ31t = χ
(0)
31t + g(φ3c, Ḡ)φ2s, (24)

βc = β(0)
c + h(φ3c, Ḡ)φ2

3cφ2s. (25)

Here, β(0)
c gives the tri-critical point in the case of φ2s = 0.

From Eq. (21), the prefactors g and h are given by

g(φ3,G) = φ−2
3 [e−Gφ3{1 + Gφ3(1 − φ3)} − 1], (26)

h(φ3,G) = φ−3
3

[
2 − e−Gφ3

{
G2φ2

3(1 − φ3) + 2Gφ3 + 2
}]

.

(27)

g and h change their signs depending on φ3 and G. Their de-
pendences are shown in Fig. 6. If g(φ3, G) is positive, the tran-
sition point shifts to higher χ31 with an increasing φ2s and vice
versa. Eq. (26) for φ2s = 0.001 is drawn in the broken curve
in Fig. 3(b). Here, we set φ3c = 0.0267 and χ31t = 0.5327.
This approximated curve is in agreement with the numerical
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FIG. 6. The contours of the functions g [Eq. (26)] and h [Eq. (27)] are drawn in G-φ3 planes (a) and (b), respectively. The transition point is increased linearly
with φ2s in the region of for positive g. In the region of negative h, the volume gap of the transition point is increased.
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FIG. 7. The swelling curves of a gel immersed in a mixture solvent in a
wider range of χ31. We set φ30 = 1.0 × 10−2, νv0 = 1.0 × 10−5, B = 1.15,
and χ12 = 0.0. We dissolve the strongly good solute of χ23 = −10.0 and φ2s
= 1.0 × 10−4. The black solid lines are calculated by Eq. (21) . The second
volume phase transition is induced.

solution. When φ3c � 1, g ≈ −G(G + 2)/2 and it changes its
sign at G = 0 and G = −2. A large negative h enhances the
discontinuity of the volume change as observed in Fig. 2(b). If
φ3c � 1, h is expressed as h ≈ G2(G + 3)/3 and it changes its
sign at G = −3. Thus, we can possibly induce the VPT even
in a gel, which originally shows a continuous volume change,
by adding solute of −G � 3. The gap of the VPT disappears
as 
φ3t ∝ √

φ2st − φ2s, where φ2st = {β − β(0)
c }h−1φ−2

3c . This
disappearing behavior is observed in Fig. 4.

In this paper, only the numerical solutions for χ12

= 0.0 are presented. However, we confirmed that the essen-
tially same features are observed for any set of χ12 and χ31 if
the resultant G is the same.

B. The second volume phase transition

In Fig. 7, we plot the swelling curves in a wider range of
χ31. We set φ30 = 1.0 × 10−2, νv0 = 1.0 × 10−5, B = 1.15,
χ12 = 0.0, and χ23 = −10.0. It is indicated that another dis-
continuous volume phase transition can occur at χ31 larger
than χ31t corresponding to the first transition. We confirmed
that this second phase transition is observed even if ν = 0 (or,
α = β = 0), while the first one disappears. This fact indicates
that this second instability is independent of the network elas-
ticity and has a physical mechanism different from those for
well-studied volume phase transitions.3

Scott reported that various types of phase diagrams are
realized for ternary mixtures (polymer solutions in binary
mixtures).34 They can have several critical points, below
which three phases coexist. Analogous to the ternary mix-
tures, we consider that the second volume transition observed
in Fig. 7 is attributed to the bulk instability of the mixing free
energy. Since there are some differences between ternary mix-
tures and gels in mixture solvents, the Scott’s argument cannot
be simply applied to the gel systems. The most important dif-
ferences are that a gel has the elasticity and never exhibits a
one-phase homogeneous state.

 0
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 3

 0  0.2  0.4  0.6  0.8

FIG. 8. The theoretical curves of ∂χ
(0)
31 /∂φ3 and −h(φ3, G)φ2s are shown.

When ∂χ
(0)
31 /∂φ3 < −h(φ3, G)φ2s, the gel becomes mechanically unstable,

showing the second volume phase transition.

We have not obtained a simple explanation on the sec-
ond transition, since nonlinearities, which are hard to treat
analytically, would play important roles in the bulk instabil-
ity. In Fig. 7, we also draw the swelling curve obtained by
Eq. (21), which neglects the nonlinearity of φ2s. The approx-
imated curve also exhibits the second transition, although it
does not coincide quantitatively with the numerical solutions
for large φ3. However, this fact implies that the nonlinearity
of φ2 has a minor contribution to the essential mechanism of
the second transition.

As discussed above, the gel becomes mechanically un-
stable when ∂χ31/∂φ3 < 0. In Fig. 8, we plot ∂χ

(0)
31 /∂φ3 and

−h(φ3, G)φ2s, where χ
(0)
31 (φ3) is the swelling curve of the gel

in the solvent of the first component. In the range satisfying
∂χ

(0)
31 /∂φ3 < −h(φ3,G)φ2s, the gel would exhibit a discontin-

uous volume change. It is indicated that strong nonlinearity of
h(φ3, G) with respect to φ3 is a possible origin of the second
transition.

IV. SUMMARY AND REMARKS

We studied the volume phase transition of gels immersed
in binary mixtures, based on the three-component Flory-
Rehner model. Assuming that the volume fraction of the sec-
ond solvent component is small, we reformulated the Flory-
Rehner model into a simple model with a new parameter
G(= χ23 − χ31 − χ12). From numerical solutions and the
simplified theory, we found the following behaviors of the
volume phase transition of the gel.

(i) When the selectivity of the second component to the
polymer network is small, the composition of the mix-
ture solvent in the gel is close to that out of the gel.
Here, the single liquid approximation works well. The
renormalized interaction parameter between the solvent
and the network depends linearly on the composition
of the binary mixture. Thus, we can swell the gel by
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dissolving the additive good to the network, whereas,
the gel is shrunken when the poor additive is dissolved.

On the other hand, the difference of the compo-
sition becomes large when the additive selectivity is
strong. Owing to the nonlinearity of the composition
difference, the gel tends to be shrunken as the addi-
tive concentration is increased, regardless of whether
it is good or poor. From the simplified theory, the de-
pendence of the transition point on the additive con-
centration is found to be proportional to ∂χ31t/∂φ2s

≈ g(φ3c, Ḡ), which is approximated as g ≈ −Ḡ(Ḡ
+ 2)/2 for a hyper swollen gel.

(ii) By dissolving the strongly poor additive, we can extin-
guish the discontinuous volume phase transition. Fur-
thermore, we can induce the volume phase transition in
the gel, which does not exhibit the discontinuous gap in
the absence of the additive, by dissolving the strongly
good additive. In the vicinity of the (first) tri-critical
point, this behavior is well described by the simplified
theory as shown in Fig. 6(b).

(iii) Far from the transition point, we found that another vol-
ume phase transition can occur. This second instability
is observed even if the elasticity is negligible. The tran-
sition is caused by the mixing instability. Our theory
indicates that the nonlinearity of φ3, which is well de-
scribed by Eq. (27), does have a major contribution to
the transition.

Here, we make some remarks about our results.

(1) If only van der Waals interaction is taken into account,
the interaction parameters should be positive, i.e., χ ij ≥
0. However, a variety of molecular forces, such as ion-
dipole interaction, hydrogen bonding and hydrophobic
interaction, would also influence the volume phase tran-
sition of the gel. When studying their contributions ex-
plicitly, we have to consider the microscopic degrees of
the freedom in a more specific manner.21, 23, 24 In this
work, we assume that the macroscopic χ parameter can
have a large negative value, by renormalizing these mi-
croscopic degrees into them. In a future work, we would
like to investigate the connections of such microscopic
interactions and our phenomenological theory. Effects
of the selective salts31 on polyelectrolyte gels are also
interesting.

(2) Effects of additives on thermo-sensitive NIPA and PAA
gels have been intensively studied.11–21 However, there
remain some problems which are difficult to explain by
conventional theories. Although our model is very sim-
ple, it can predict counterintuitive behaviors. It would be
helpful to elucidate some of unresolved problems.
For instance, Ishidao et al. studied the volume transition
of NIPA gels in aqueous solutions.25 They observed that
the concentration of 1-propanol inside the gel is larger
than that outside the gel. This indicates that this addi-
tive has more good affinity to the polymer network than
water, so that one can imagine that addition of the 1-
propanol makes the mixture solvent more good. How-
ever, the NIPA gel is shrunken by dissolving a small
amount of this additive. In this paper, we show consid-

ering the nonlinearities of G and φ3 enables us to un-
derstand such a counterintuitive behavior. Here, we note
that the mixing of two solvents decreases the effective
interaction parameter in usual cosolvents with χ12 > 0
[see Eq. (18)].

Furthermore, Annaka et al. reported that the vol-
ume change of NIPA becomes continuous by dissolving
NaI.14 Ordinary theories cannot describe any additive-
induced disappearance of discontinuous transition. As
commented in Ref. 14, the disappearance of the VPT
is considered to be attributed to the interaction between
the salt and the polymer network. We consider that re-
sultant inhomogeneities of the ion concentrations also
play a key role in this continuous volume change, as dis-
cussed in this paper. Since our model considers only one
species of solute and neglects the electrostatic interac-
tions, however, it cannot explain this experimental result
quantitatively.

Since only a few experiments have reported the dif-
ference of the additive concentrations between in and out
of the gels,25, 36 however, we cannot verify the quantita-
tive validity of our model yet. Further experimental stud-
ies are highly desired.

(3) So far, thermo-sensitivities of gel volumes have been
found only in hydrophilic gels such as polyelectrolytes
and NIPA. In them, the electrostatic interactions (in-
cluding hydrogen bondings) would play important roles
more and less. Our model is based on the Flory-Huggins
free energy, so that it can be applied ubiquitously to
many types of polymer networks including hydropho-
bic (lipophilic) ones. We hope our model will help one
to find volume phase transitions in gels other than poly-
electrolytes, NIPA, PAA, and their derivatives.
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